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Abstract

A space–time functional form for some contaminants is obtained and used for estimating total
air pollution (TAP) in the district of Milan, Italy, during selected high-risk days of 1999. This
functional form is determined through a space–time product–sum variogram model for TAP
measurements and the dual form of kriging, i.e., radial basis functions. Data for nitric oxide
(NO), nitrogen dioxide (NO2) and carbon monoxide (CO) collected in Milan district, Italy are
used to generate a combined indicator of tra5c pollution, called TAP. In a previous study the
weightings were obtained by multiple principal component analyses of the daily concentration
levels. It was found that the 6rst component explains approximately 70% of the total variance
for each day and this component is treated as samples de6ned over space and time. A systematic
pattern, which follows the corridor along which survey stations, characterized by heavy tra5c
are located, has been observed for TAP throughout Milan district, for all days considered. Note
that the pollution data set is just an illustration for the new statistical method proposed. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

There are two ways of viewing the interpolation problem. In one case interpolation
might be thought of as simply generating a contour map of the variable or variables
of interest. Even from this perspective there is an advantage in generating a single
measurement of pollution, i.e., a single map. However, the second perspective is that of
generating an interpolating function which would then be amenable to further analysis
as suggested by Myers (2001). The dual form of kriging estimator together with the
space–time variogram model provides such an interpolating function and it has been
used to generate an analytical form of the function for a synthetic measurement of
pollution in order to describe its behavior over particular regions and risk days which
were selected in a suitable way.

In a previous paper (De Iaco et al., 2001a) principal component analysis (PCA) was
applied to an air pollution data set from Milan district, Italy, involving three contami-
nants (NO, NO2 and CO) and the 6rst component was considered as a measure of total
air pollution (TAP), mainly caused by heavy tra5c, in lieu of the separate contaminant
concentrations. This component was treated as a sample from an unobserved variate
de6ned over space and time and a space–time variogram was 6tted to this new variate
using the generalized product–sum model (De Iaco et al., 2001b), which has been used
in the dual form of kriging to generate an interpolating function of TAP.

As outlined in Section 3, this last model is more general than a linear model, the
product model and a product–sum model; moreover, it is not integrable, hence it cannot
be obtained from the Cressie–Huang representation and it is Fexible for estimating and
modeling spatio-temporal correlation structures.

The PCA results can be used in several ways to produce a better picture of the air
pollution levels both in space and time. One of the purposes of the following analysis
is to 6nd simple underlying components and to attribute physical meaning to them.
Knowing the possible sources, their individual emissions would allow a comparison to
determine if pollution is Fowing into or out of a region. The comparison might also
be used to determine if there are unidenti6ed sources.

For example, in this study, six risk days have been selected and the interpolating
function has been used to produce the corresponding maps of TAP in Milan district.
A systematic pattern for TAP has been observed throughout Milan district, for all days
considered: this pattern follows the corridor along which survey stations, characterized
by heavy tra5c, are located. Moreover, a second, less signi6cant, pattern has been
observed and it involves survey stations characterized by high-density population.

It is important to point out that the pollution data set from Milan district is just here
an illustration for the new statistical method proposed.

2. Techniques for analyzing multivariate space–time data

Contaminants involved in air pollution are usually classi6ed into two main groups:
those emitted by vehicles (or resulting from chemical reactions involving emissions
from vehicles) and contaminants emitted from industrial sources (and their by-products).
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However, some contaminants may arise from either of these two general sources and
monitoring equipment does not easily distinguish between the possible sources. The
problem is complicated by both economic and physical constraints; each additional
monitoring station represents a proportional increase in cost where as once established
the station may easily collect data for multiple contaminants and may also collect data
for a large number of time points; it may also not be easy or even possible to site
monitoring stations in the most desirable locations.

Anyway, apart from sampling problems, a viable treatment of air pollution data
should (a) consider multiple contaminants, (b) account for or incorporate the inter-
variable correlation between contaminants, (c) account for or incorporate spatial correla-
tion for each contaminant separately, (d) account for or incorporate temporal
dependence for each contaminant.

In a spatio-temporal multivariate context, co-kriging would provide an appropriate
tool for incorporating the spatio-temporal correlation of each contaminant as well as
the inter-variable correlation. However, this requires solving two problems, adequately
6tting valid spatio-temporal variograms or covariances and also adequately 6tting valid
spatio-temporal cross-variograms or cross-covariances. The problem can be simpli6ed
somewhat by generating a single measure of TAP. The simplest single measure would
be a linear combination, then the problem is how to choose the weights in the lin-
ear combination. The weighting scheme should reFect the inter-variable correlation
which may be time-dependent. Replacing the vector of contaminant values, at a given
location and time, by a weighted linear combination is not quite optimal as shown
in Myers (1983) but it has the advantage of only requiring the modeling of a single
spatio-temporal variogram. An appropriate weighted linear combination might be more
useful for detecting and identifying anomalous locations and=or dates than attempting
to do this for each contaminant and possibly having conFicting indicators.

PCA is a widely used technique for identifying and removing the cross-
correlation in multivariate data. Its application to climatic data is well documented
in Preisendorfer (1988) with an emphasis on the use of empirical orthogonal functions.
Several authors have considered the extension to data exhibiting spatial as well as
temporal correlation, for example multivariate spatial and temporal correlation (Wack-
ernagel, 1995). Statheropoulos et al. (1998) applied PCA to 5 years data concerning
air pollutants and meteorological variables taken at one station (multivariate tempo-
ral analysis). These approaches usually de6ne a vector of time or spatial-dependent
second-order stationary random functions, whose components are related to diKerent
variables, respectively, at one station or time-point (Wackernagel, 1998).

PCA has been used previously in connection with kriging and cokriging in a slightly
diKerent but somewhat similar way. Coal has at least three important characteristics:
sulfur content, ash and BTU content. Each of these aKects the value of an amount
of coal, a simple measure of value might then be a linear combination of the three
characteristics. While in this case one might use exogenous information to determine
the weighting scheme, there is still the question of whether to spatially analyse the three
characteristics 6rst and form a linear combination, or to analyse the simple measure of
value. The former approach requires modeling both variograms and cross-variograms.
The weighting scheme is then applied to the interpolated characteristics. Alternatively as
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suggested above, interpolation of the linear combination would only require modeling of
one variogram. Davis and Greenes (1983) used a slightly diKerent approach: PCA was
used to generate “new” characteristics, i.e., linear combinations of the original ones.
These data were treated as samples from random functions representing the “new”
variables and hence the data were used to model variograms for the “new” variables.
They then veri6ed that the sample cross-variograms justi6ed the assumption that the
“new” variables were spatially not cross-correlated. In that case, co-kriging the three
“new” variates reduces to separate kriging of the three.

As mentioned above, in this paper PCA has been used to determine a weighting
scheme for a linear combination of the contaminants considered, and the 6rst component
has been considered as a measure of TAP, however, the question of modelling it
remains an open problem.

3. The data set

As it was pointed out (De Cesare et al., 1997), air pollution in Milan district, may
be attributed to diKerent factors: emissions from motor vehicles, manufacturing and
heating systems during winter.

Although several pollutants are provided by the monitoring system in Milan district,
contaminants, mainly caused by heavy tra5c, whose measuring devices are located
close to the main urban center streets or motorways, are chosen. For this reason, other
pollutants, even critical for the public health, have been left out; such as ozone (O3)
which is caused by complex photochemical processes. In particular, the air pollution
data set involves three contaminants, NO, NO2 and CO, available at 30 locations, taken
hourly during the whole 1999 and converted to daily averages; then, these values have
been standardized. The air pollution monitoring network for NO, NO2 and CO is shown
in Fig. 1, where the following classi6cation of the monitoring stations according to the
Premier’s Decree in 1991 is pointed out:
• stations characterized by high-density population (solid squares);
• stations characterized by heavy tra5c (solid circles).

It is important to point out that, up to the present, this work is not supported by a
grant or a joint work with pollution engineers. Indeed, the environmental protection
system is only in charge of collecting the concentration values of various pollutants
and atmospheric variables according to the national law and bringing under control
the most dangerous pollutants without analyzing in detail of the fundamental issues
concerning environmental protection.

In a previous paper (De Iaco et al., 2001a) PCA was applied to each of the 365
standardized data sets (3 contaminants and 30 stations) and it was shown that the
6rst component explains approximately 70% of the total variance for each day al-
though this dominance is reduced in summer. While the mixing of contaminants on
any 1 day is relatively 6xed, this mixing can easily change from one to another due
to the day of the week, the season of the year, factory scheduling, changes in tra5c
densities.
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Fig. 1. Posting map of 30 survey stations in Milan district and their classi6cation.

For the 6rst component, all the linear combinations for which the eigenvectors had
the sign pattern (+; +; +) for NO, NO2 and CO, were considered. Since the loadings,
selected in such a way, were all positive and almost equal, the above linear combi-
nations has been reasonably interpreted as a measure of TAP generated by NO, NO2

and CO and used in this study.
Indeed, if the loadings are almost of the same magnitude and all positive, the cor-

responding principal component variate is called size factor, in the sense that it is
considered as an index that best summarizes the data (Dunteman, 1989).

Fig. 2 shows the histogram of TAP values. In order to select the days of 1999 for
which pollution concentrations are both critical and more spread out, the following
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Fig. 2. Histogram of TAP values.

procedure has been adopted:
• the 90th and the 95th percentiles of TAP values have been considered;
• the days for which at least 6ve stations present values of TAP greater than the 90th

percentile have been selected;
• the days for which at least three stations present values of TAP greater than the

95th percentile have been chosen;
• the days resulting from the intersection have been selected.

In Fig. 3 the shape of the posting symbol varies according to the frequency of val-
ues for TAP greater than the 90th percentile. Note that the distinction between the
two types of the stations has been preserved as in Fig. 1, that is empty symbols
are used for high density population stations and solid symbols for heavy tra5c
stations.

4. Space–time correlation models

Besides some classes of spatio-temporal covariance models that have appeared in the
literature, the product–sum covariance model and the generalized product–sum covari-
ance model, which has been used in this paper, are brieFy presented in this section.

Consider a space–time second-order stationary random 6eld:

Z = {Z(s; t); (s; t)∈D × T}; (1)

where D ⊂ Rd and T ⊂ R+, with covariance:

Cst(h) = Cov(Z(s + hs; t + ht); Z(s; t)); (2)
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Fig. 3. Posting map of the monitoring stations where TAP values were greater than the 90th percentile.

and variogram:

2st(h) = Var(Z(s + hs; t + ht) − Z(s; t)); (3)

where h = (hs; ht), (s; s + hs)∈D2 and (t; t + ht)∈T 2.
(1) For the metric model (Dimitrakopoulos and Luo, 1994), it is assumed that:

Cst(hs; ht) = C(a2|hs|2 + b2h2
t ); (4)

where the coe5cients a; b∈R. Note that in (4) the same type of model is assumed
for the spatial and temporal covariances, with possible changes in the range.

(2) In the product model (De Cesare et al., 1997), the spatio–temporal covariance
is:

Cst(hs; ht) = Cs(hs)Ct(ht); (5)

where the spatial dependence is separated by the temporal one. In (5) Cs is a positive-
de6nite function in Rd and Ct is a positive-de6nite function in R; admissible spatial
covariance models and admissible temporal covariance models are readily available
(Cressie, 1993), hence they can be combined in product form to give spatio-temporal
covariance models. However, the class (5) is severely limited, since for any pair of
spatial locations the cross-covariance function of the two time series always has the
same shape. In fact, for any two 6xed spatial lags h1 and h2, it results that:

Cst(h1; ht) ˙ Cst(h2; ht):

A similar result holds for any pair of time points and the cross-covariance function of
the two spatial processes.
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(3) The linear model. Another type of separability involves adding spatial and tem-
poral covariances (Rouhani and Hall, 1989), that is:

Cst(hs; ht) = Cs(hs) + Ct(ht): (6)

For this model, covariance matrices of certain con6gurations of spatio-temporal data
are singular (Myers and Journel, 1990): in this case, the covariance function is only
positive semide6nite and it is unsatisfactory for optimal prediction.

(4) The nonseparable model. A new approach that allows us to obtain classes of non-
separable, spatio-temporal stationary covariance functions has been derived by Cressie
and Huang (1999). The authors assume that:

Cst(hs; ht) =
∫

eihT
s !�(!; ht)k(!) d!; (7)

where the following two conditions are satis6ed:
• for each !∈Rd, �(!; :) is a continuous autocorrelation function and

k(!) ¿ 0;
• the positive function k(!) satis6es:∫

k(!) d! ¡∞:

(5) The product–sum covariance model can be obtained in the following way:

Cst(hs; ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht); (8)

or equivalently, in terms of the semivariogram function:

st(hs; ht) = [k2 + k1Ct(0)]s(hs) + [k3 + k1Cs(0)]t(ht) − k1s(hs)t(ht); (9)

where Cs and Ct are covariance functions, s and t are the corresponding semivario-
gram functions and k1 ¿ 0; k2 ¿ 0; k3 ¿ 0 to ensure admissibility. Note that Cst(0; 0)
is the sill of st (“global” sill), Cs(0) is the sill of s and Ct(0) is the sill of t (Cs(0)
and Ct(0) are named “partial” sills).

4.1. The generalized product–sum model

A generalization of the product–sum covariance model introduced by
De Cesare et al. (2001b) is given by the generalized product–sum model (De Iaco
et al., 2001b):

st(hs; ht) = st(hs; 0) + st(0; ht) − kst(hs; 0)st(0; ht); (10)

where st(hs; 0) and st(0; ht) are valid spatial and temporal bounded variogram func-
tions and

k =
(sillst(hs; 0) + sillst(0; ht) − sillst(hs; ht))

(sillst(hs; 0)sillst(0; ht))
: (11)
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Theoretical results are given in De Iaco et al. (2001b) and a modi6cation of the GSLIB
software (Deutsch and Journel, 1997) to apply the product–sum model is given in De
Cesare et al. (2002). An application of the product–sum model and some theoretical
results are given in De Cesare et al. (2001a, b).

In modelling the separate spatial and temporal variograms, the sills which are cho-
sen allow specifying the su5cient condition of admissibility for st(hs; ht) is satis6ed,
namely:

0 ¡ k6 1=max{sill(st(hs; 0)); sill(st(0; ht))}: (12)

Note that k is selected in such a way to ensure that the global sill is 6tted.

4.2. Some general comments

A brief comparative study among the classes of models previously described has
been made in this section. Particularly:
• if the autocorrelation function � in (7) is purely a function of ht , then the product

covariance model is obtained;
• the product model and the linear model are easily obtained by the product–sum

covariance model setting, respectively, k2 = k3 = 0 and k1 = 0;
• the product–sum covariance model and the generalized product–sum covariance

model are non-separable and, in general, are non-integrable, hence they cannot be
obtained from the Cressie–Huang representation. Moreover, the product–sum covari-
ance model and the generalized product–sum covariance model do not require the
use of a metric in space–time;

• the product–sum covariance model and the generalized product–sum covariance
model are more Fexible than the non-separable covariance model for estimating
and modelling spatio-temporal correlation structures.

4.3. Space–time variogram modelling

The space–time analysis has been performed by using the data for TAP at 30 mon-
itoring stations for all 365 days of 1999. TAP measurements are considered as a
realization of a space–time second-order stationary random 6eld:

Z = {Z(s; t); (s; t)∈D × T}; (13)

where D ⊂ R2 and T ⊂ R+, with variogram:

2st(h) = Var(Z(s + hs; t + ht) − Z(s; t)); (14)

where h = (hs; ht), (s; s + hs)∈D2 and (t; t + ht)∈T 2.
The sample spatial and temporal variograms for TAP and their models are shown in

Fig. 4(a) and (b). Note that the temporal variogram highlights the weekly seasonality
presented by the data.

Analytical expressions for the 6tted models are given below:

st(hs; 0) = 2(1 − exp(−hs=2000)); (15)

st(0; ht) = 0:64(1 − exp(−ht=1:6)) + 0:26(1 − cos(ht2�=7)): (16)
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(a) (b)

Fig. 4. Sample spatial and temporal variograms and their models.

Fig. 5. Sample space–time variogram surface.

In order to compute (11) and generate the model (10) which can then be used for
prediction in space and time, the sill value Cst(0; 0) of st(hs; ht) (called “global” sill in
the literature) has been estimated graphically by plotting the spatio-temporal variogram
surface (Fig. 5).

The “global” sill value for TAP is 2.2 and the resulting space–time admissible model
is:

st(hs; ht) = st(hs; 0) + st(0; ht) − 0:39[st(hs; 0)st(0; ht)]: (17)
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As pointed out in Section 2, 6 days (the 6th of March, the 9th of April, the 31st of May,
the 6th of August, the 8th of October and the 5th of December), which have met the
criteria, have been retained for the following analysis. Goodness of the 6tted product–
sum model (17) has been evaluated for those days at the monitoring stations through
cross-validation. For each risk day, the space–time neighborhood, used to estimate at
the monitoring stations, is the following:
(1) 3 days before and 3 days after the risk day;
(2) spatial range of the space–time model.

Fig. 6 shows the scatter plots of true values vs. estimates together with the correlation
coe5cients.

5. Functional form of interpolators

Kriging written in the dual form is the same as what is known in the numerical
analysis literature as radial basis functions (RBF), the thin plate spline (TPS) is a spe-
cial case of both. The functional form for the interpolator is the same for dual kriging
and RBF (Myers, 1992). The TPS corresponds to a speci6c generalized covariance,
whereas the kriging estimator or the radial basis function interpolator only requires the
use of a kernel with appropriate positive de6niteness properties. This allows adapting
the kernel function to a particular data set. The extension of space–time kriging to
RBF’s is given in Myers et al. (2002) and it is brieFy reviewed herein. Let Z(s; t)
denote the function representing the concentration of the contaminant of interest at
space location s and time t, then the dual kriging=RBF interpolator of this unknown
function is given by:

Ẑ(s; t) =
n∑

i=1

big(s − si ; t − ti) +
p∑

k=0

akfk(s; t); (18)

where

(si ; ti); i = 1; : : : ; n

are the data locations and g is the spatio-temporal variogram (10). The unknown co-
e5cients in this interpolating function are obtained as the solution of a system of
linear equations. The fk(s; t); k = 0; : : : ; p are linearly independent functions, usually
monomials in the coordinates (s; t). Although it would be unlikely that the fk ’s would
be periodic in the position coordinates, it is likely that sine, cosine terms in the time
coordinate could be included. These terms correspond to the mean function of the ran-
dom function Z(s; t) or to the null space of the operator in the case of RBF’s. As
an alternative to incorporating non-constant fk ’s, one may 6t the data to a trend sur-
face (polynomial functions in the space coordinates and periodic functions in the time
coordinate), then the residual data are used for the analysis, later the 6tted trend surface
is added back.
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5.1. Space–time RBF for TAP

To illustrate the use of the interpolating function approach to characterizing a con-
taminant plume, the dual form of kriging (18), where g is the space–time variogram
given in (17), has been used to estimate TAP throughout Milan district for the six high
risk days previously identi6ed for 1999. The data do not exhibit any signi6cant spatial
non-stationarity and the temporal seasonal component is included in the variogram as
described in Section 3. Thus in this application f0(s; t)=1 and fk(s; t)=0; k =1; : : : ; p.

Particularly, let tj; j = 65; 99; 151; 218; 281; 339 be the risk days, the coe5cients bj

for the interpolator associated to each risk day tj, have been estimated taking into
account all the data points belonging to the following set:

{(si ; tj+k); i = 1; : : : ; 30; k = −3;−2;−1; 1; 2; 3}:
Figs. 7 and 8 show the contour maps for these high-risk days.

5.2. Numerical problems

In its usual form, the coe5cients in the kriging estimator can be obtained “locally”,
i.e., one need not use the entire data-set to solve the system of equations but rather
a moving search window is used. In the dual form, this approach cannot be used in
such a simple form. The di5culty is greatly exaggerated in the space–time context
because while the number of monitoring stations may be small, data will be collected
at a large number of time points thus the entire data set is large. This problem has
been addressed in Schaback and Wendland (2000), Faul and Powell (2000), AuñVon
and GVomez-HernVandez (2000).

6. Results

As it was pointed out in Section 2, the risk days have been selected using two
combined criteria. Six days (the 6th of March, the 9th of April, the 31st of May, the
6th of August, the 8th of October and the 5th of December) which have met both
criteria have been retained.

From Figs. 7 and 8, note that a systematic pattern for TAP is observed, for all days
considered: this pattern follows the corridor along which survey stations, characterized
by heavy tra5c, are located. Particularly, the monitoring stations, which most frequently
have high values for TAP, are primarily located in the city of Milan and the north
eastern part of the district. A second, less signi6cant, pattern is also observed for some
days and it involves survey stations characterized by high-density population, as it was
pointed out in Fig. 1: the corresponding monitoring stations are located in the north
western and south eastern part of the district.

Note that only one risk day (the 6th of August) has been detected in summer time,
hence total air pollution should present lower relative values during this season, with
respect to the rest of the year. This is because either the atmospheric conditions help
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Fig. 7. Contour maps of TAP for the risk days: 6 April, 9 March and 31 May.
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Fig. 8. Contour maps of TAP for the risk days: 6 August, 8 October and 5 December.
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the dispersion of pollutants or lower tra5c characterizes the monitoring stations as
de6ned in Section 2.

7. Summary and conclusions

In this paper a new statistical method for conducting spatio-temporal analysis is
proposed. Particularly, a space–time functional form is considered for estimating TAP in
Milan district, Italy, using data of diKerent atmospheric pollutants, observed irregularly
over space and regularly over time. Then, air pollution patterns in Milan district, during
1999 have been analyzed using this measurements of TAP, constructed as a linear
combination of the daily averages of NO, NO2 and CO, whose weights were determined
by the use of PCA. TAP measurements have been considered as realization of a random
function de6ned in space–time and they have been modeled by using a generalized
product-sum model. The monitoring stations, which most frequently have high values
for TAP, are primarily located in heavy tra5c area, that is in the city of Milan and
the north eastern part of the district.

In the appendix some advantages of using the RBF approach are outlined.

Appendix A. Advantages of using a RBF

As noted above, Z(s; t) is assumed to represent the concentration of a contaminant
at the space–time point (s; t)∈Rd × T , then the “plume” is the set of points where
Z(s; t) ¿ 0. More precisely, let

P(t) = {s∈Rd |Z(s; t) ¿ 0}; (A.1)

then P(t) is a set of points in space which can change with time. Properties of
the plume can be described in terms of the (unknown) function Z(s; t) and these
properties=characteristics can be estimated by Ẑ(s; t). Considering the indicator func-
tion of Z(s; t):

IZ(s; t; z) =

{
1 Z(s; t)6 z;

0 Z(s; t) ¿ z;
(A.2)

the volume of the plume at time t is given by:

V(t) =
∫

Rd
[1 − IZ(s; t; 0)] ds: (A.3)

If the plume is bounded in space then the boundedness of the integrand is su5cient
to ensure that the integral exists. Because instrumentation and=or analytical procedures
will nearly always have a detection limit that is greater than zero, when using data to
estimate the plume volume it will be more appropriate to use a slightly positive cut-oK
value in lieu of zero. The rate of change of the volume of the plume would then be
given by the time derivative:

d
dt
V(t): (A.4)
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While it might not be reasonable to expect the indicator function to be smooth as a
function of the space coordinates, it is more reasonable to expect it to be smooth, i.e.,
diKerentiable with respect to the time variable.

The total amount of contaminant in the plume, at time t is given by:

T(t) =
∫
P(t)

Z(s; t) ds: (A.5)

The total contaminant concentration in the plume may be of interest because in some
instances it will be possible to determine the total pollution independently of estimating
this integral and as such would allow a check on the modeling of the plume function.
Of course the average concentration of the contaminant in the plume would be given
by:

T(t)=V(t);

and the rate of change of the average concentration is given by:
d
dt

[T(t)=V(t)]: (A.6)

However, in some instances it might be useful to compute the average of a 6xed
spatial area rather than over the entire plume. Of course the rate of change of the total
concentration would be given by:

d
dt
T(t):

If the function Z(s; t) is su5ciently smooth with respect to time, then

R(s) =
d
dt

Z(s; t) (A.7)

would be the local rate of change of concentration. The set of points, in space, where
this derivative is zero would represent a stagnant area.
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