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S

We propose a nonstationary periodogram and various parametric approaches for esti-
mating the spectral density of a nonstationary spatial process. We also study the asymp-
totic properties of the proposed estimators via shrinking asymptotics, assuming the
distance between neighbouring observations tends to zero as the size of the observation
region grows without bound. With this type of asymptotic model we can uniquely deter-
mine the spectral density, avoiding the aliasing problem. We also present a new class of
nonstationary processes, based on a convolution of local stationary processes. This model
has the advantage that the model is simultaneously defined everywhere, unlike ‘moving
window’ approaches, but it retains the attractive property that, locally in small regions,
it behaves like a stationary spatial process. Applications include the spatial analysis and
modelling of air pollution data provided by the US Environmental Protection Agency.
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1. I

The periodogram, a nonparametric estimate of the spectral density, is a powerful tool
for studying the properties of stationary processes observed on a d-dimensional lattice.
Use and properties of spatial periodograms for stationary processes have been investigated
by Stein (1995), Guyon (1982, 1992), Ripley (1981), Rosenblatt (1985) and Whittle (1954)
among others. Pawitan & O’Sullivan (1994) proposed a nonparametric spectral density
estimator using a penalised Whittle likelihood for a stationary time series. Guyon (1982)
studied the asymptotic properties of various parameter estimation procedures for a general
stationary process on a d-dimensional lattice, using spectral methods. The spectral rep-
resentation of a stationary process Z is interpreted as its representation in the form of
superposition of sine and cosine waves of different frequencies.

However, spatial processes in environmental sciences, oceanography, soil science and
many other disciplines are generally nonstationary, in the sense that the spatial structure
depends on location. In this paper we introduce spectral methods for studying the spatial
structure of a nonstationary process, using a Fourier–Stieltjes representation of the process.
New fitting algorithms are developed. In cases where the data are observed on a
d-dimensional lattice, it is argued that these spectral approaches have computational
benefits compared with maximum likelihood on the space domain. We also present a new
class of nonstationary processes.

In § 2, we introduce a spectral representation for a nonstationary spatial process, and
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we define an asymptotic model that we call shrinking asymptotics, which assumes that
the distance between neighbouring observations tends to zero and the size of the obser-
vation region grows without bound. In § 3, we propose a nonstationary periodogram for
estimating the spectral density of a nonstationary spatial process, and we study the proper-
ties of the proposed estimator. In § 4, we present a new class of nonstationary processes,
based on a convolution of local stationary processes, and we propose nonparametric and
parametric estimators of the spectral density using this new nonstationary model. Section 5
contains an application of the methodology presented in this paper to atmospheric air
pollution data. The data come from the regional scale air quality models, known as
Models-3, that are run by the US Environmental Protection Agency. Models-3 provide
pollutants’ concentrations and fluxes in regular grids in parts of the United States; see
Fig. 1 below. The lattice structure of Models-3 is perfectly suited to our spectral methods.

2. R    

2·1. Spectral function of a nonstationary process

A random field Z in R2 is called weakly stationary if it has finite second moments, its
mean function is constant and it possesses an autocovariance function C such that
C(x−y)=cov{Z(x), Z(y)}. If Z is a weakly stationary random field with autocovariance
function C, then we can represent the process in the form of the following Fourier–Stieltjes
integral:

Z(x)= P
R2

exp (ixTv) dY (v), (1)

where Y are random functions with uncorrelated increments; see Jaglom (1987, p. 100),
for example. Now we abandon the requirement that the function Y (v) in the integrand
of (1) necessarily have uncorrelated increments, thereby obtaining the Fourier–Stieltjes
representation of a nonstationary random process Z(x) (Jaglom, 1987, p. 460). It is easy
to see that then the covariance function C of the nonstationary process Z(x) is given by

cov{Z(x
1
), Z(x

2
)}=C(x

1
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2
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R2
P
R2

exp{i(xT
1
v
1
−xT
2
v
2
)} d2F(v

1
, v
2
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where F(v1 , v2 ) is the spectral function

E{Y (v
1
)Y c(v

2
)}=F(v

1
, v
2
), (3)

and Y c denotes the conjugate of Y. It is clear that, if F(v1 , v2 ) is a function of bounded
variation in the plane, i.e.

P
R2
P
R2

|d2F(v
1
, v
2
) |=V

F
<2,

then the integral (2) is necessarily convergent, and Z is called a harmonisable random
process.

If F has a density with respect to Lebesgue measure, this density is the spectral density
f which is again the Fourier transform of the autocovariance function:

f (v
1
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2
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(2p)4 P
R2
P
R2

exp{−i(xT
1
v
1
−xT
2
v
2
)}C(x

1
, x
2
) dx
1
dx
2
. (4)



199Nonstationary spatial processes

2·2. Aliasing

The spectral functions f and F are closely related to the spectral decomposition of the
process Z into a superposition of harmonic oscillations. However, it is easy to see that
such a decomposition cannot be uniquely restored from observations of a continuous
process Z on a lattice. If Z is observed only at uniformly spaced spatial locations D units
apart, the spectrum of observations of the sample sequence Z(Dx), for xµZ2, is concen-
trated within the finite frequency band −p/D∏v<p/D. The whole frequency spectrum
is partitioned into bands of length 2p/D by so-called fold points (2y+1)p/D, with yµZ2,
and the power distribution within each of the bands distinct from the principal band,
−p/D∏v<p/D, is superimposed on the power distribution within the principal band.
Thus, if we wish the spectral characteristics of the process Z to be determined accurately
enough from the observed sample, then the Nyquist frequency p/D must necessarily be so
high that still higher frequencies v make only a negligible contribution to the total power
of the process.

The spectral density f
D

of the process on the lattice can be written in terms of the
spectral density f of the continuous process Z as

f
D
(v
1
, v
2
)= ∑
Q
1
µZ2

∑
Q
2
µZ2

f Av1+ 2pQ
1

D
, v
2
+

2pQ
2

D B ,
for v1 , v2µX

2
D
=[−p/D, p/D]2. If Z is stationary with spectral density f, then

f
D
(v)= ∑

QµZ2
f Av+ 2pQ

D B . (5)

3. N   

3·1. Stationary periodograms

Consider a stationary spatial process Z. We observe the process at N equally spaced
locations in a regular grid D (n1×n2 ), where N=n1n2 and the spacing between obser-
vations is D. The periodogram is a nonparametric estimator of the spectral density. We
define I

N
(v0 ) to be the periodogram at a frequency v0 :

I
N
(v
0
)=D2(2p)−2(n

1
n
2
)−1 K ∑n1
s
1
=1
∑
n
2

s
2
=1

Z(Ds) exp (−iDsTv
0
)K2, (6)

where sT= (s1 , s2 ). In practice, the periodogram estimator for v is computed at the set of
Fourier frequencies 2pf/(Dn) where f/(Dn)= ( f1/Dn1 , f2/Dn2 ), and fµJ

N
, for

J
N
={t−(n

1
−1)/2s, . . . , n

1
−tn

1
/2s}×{t−(n

2
−1)/2s, . . . , n

2
−tn

2
/2s}, (7)

in which tus denotes the largest integer less than or equal to u.
In some instances, consistency demands that the length of the grid (n1×n2 ) over which

the process is observed increase as the number of observations increases. This ensures
that the amount of information in the data increases. We should also ask that the spacing
D between neighbouring observations goes to 0 as the number of observations increases.
This guarantees that an accurate picture of the covariance function and spectral density
can be developed nonparametrically, assuming only smoothness conditions. Therefore,
our asymptotic model supposes that the observed data represent a realisation of Z(xD )
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for xT= (x1 , x2 ), where 0∏x1∏n1 and 0∏x2∏n2 . We assume that D goes to zero as
n1�2, n2�2 and n1/n2�l, for a constant l>0, and that Dn1�2, Dn2�2 . We call
this type of asymptotics shrinking asymptotics. This is a mixture of increasing-domain
(Cressie, 1993, p. 480) and fixed-domain asymptotics (Stein, 1995) in that the distance
between neighbouring observations tends to zero and the size of the observation region
grows without bound. Constantine & Hall (1994) used this asymptotic model for one-
dimensional processes, and Lahiri et al. (1999) used it in the context of subsampling.

In Theorem 1 we study the asymptotic behaviour of the periodogram in the case where
Z is Gaussian.

For each xT= (x1 , x2 )µR2 , let dxd denote the Euclidean norm (x2
1
+x2
2
)D.

T 1. We assume the following conditions.
(1a) T he rate of decay of the spectral density f (v) at high frequencies is proportional to

dvd−t, for t>2.
(1b) T he covariance function satisfies the inequality ∆ dud |C(u) | du<2.
(1c) We require that D�0, n1�2, n2�2, n1/n2�l for a constant l>0, Dn1�2 and

Dn2�2.
T hen

(i ) the expected value of the periodogram, I
N
(v), for vµ[−p/D, p/D]2, is asymptoti-

cally f (v);
(ii ) the asymptotic variance of I

N
(v) is f 2 (v); and

(iii ) the periodogram values I
N
(v) and I

N
(v∞), for vNv∞, are asymptotically uncorrelated.

Condition (1a) is always satisfied by the spectral density (22) corresponding to a Matérn
covariance function (12). Condition (1b) implies that the spectral density f has a bounded
derivative, and Condition (1c) corresponds to the shrinking asymptotic model.

By part (i) the periodogram I
N

is asymptotically an unbiased estimator of f, the spectral
density of the continuous process Z. If we use a different asymptotic model, increasing-
domain asymptotic for instance, then I

N
is not asymptotically an unbiased estimator for

f but for f
D
, the spectral density of the sampled sequence Z(Dx) (Brillinger, 1975,

pp. 122–3). By part (ii) the variance of the periodogram at v is asymptotically f 2 (v).
Thus, since its variance is independent of N it will not be a very useful estimator in
practice. The traditional way of dealing with this lack of consistency of the periodogram
is to smooth the periodogram across frequencies. In an unpublished North Carolina State
University technical report, H. J. Kim and M. Fuentes present a new method for choosing
an appropriate smoothing parameter for the data taper by taking into account the trade-
off between bias and variance of the tapered periodogram. By part (iii) the periodogram
values are approximately uncorrelated. This property allows us to fit easily a parametric
model to the periodogram values by using least squares in the spectral domain. However,
in the space domain, the correlation among the empirical covariance or variogram values
thwarts the use of ordinary least squares.

3·2. Nonstationary periodograms

We consider a spatial nonstationary process Z with covariance function C(x, y). As in
§ 2·1, we observe the process at N=n1n2 equally spaced locations in a regular n1×n2 grid
D; the spacing between observations is D. We define a nonstationary periodogram,
I
N
(v1 , v2 ), that is a nonparametric estimator of the spectral density, f (v1 , v2 ), which is
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the Fourier transform of the nonstationary covariance function:

I
N
(v
1
, v
2
)=
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2
)
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∑
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1
) ∑
n
1

y
1
=1
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n
2

y
2
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Z(Dy) exp (iDyTv
2
),

(8)

with xT= (x1 , x2 ) and yT= ( y1, y2 ).
We define J(v), an approximation to Y (v), the Fourier transform of Z, by

J(v)=D(2p)−1(n
1
n
2
)−D ∑

n
1

x
1
=1
∑
n
2

x
2
=1

Z(Dx) exp (−iDxTv).

Thus, we obtain

I
N
(v
1
, v
2
)=J(v

1
)Jc (v

2
), (9)

and this expression for I
N

is consistent with the definition of the spectral distribution F
in (3), as a function of the spectral processes Y and Y c.

We now study the asymptotic behaviour of the nonstationary periodogram I
N
(v1 , v2 )

using shrinking asymptotics, assuming Z to be Gaussian. In Theorem 2, for each xT=
(x1 , x2 )µR2 and yT= ( y1, y2 )µR2 we write d (x, y)d to denote the Euclidean norm
(x2
1
+x2
2
+y2
1
+y2
2
)D.

T 2. We assume the following conditions.
(2a) T he rate of decay of the spectral density f (v1 , v2 ) at high frequencies is proportional

to d (v1 , v2 )d−t, for t>4.
(2b) T he covariance function satisfies the inequality

P d(u1 , u2 )d |C(u
1
, u
2
) | du
1
du
2
<2.

(2c) We require that D�0, n1�2, n2�2, n1/n2�l for a constant l>0, D2n1�2
and D2n2�2.

T hen
(i ) the expected value of the periodogram, I

N
(v1 , v2 ), with v

i
µ[−p/D, p/D]2 for

i=1, 2, is asymptotically f (v1 , v2 );
(ii ) the asymptotic variance of I

N
(v1 , v2 ) is f 2 (v1 , v2 )+ f (v1 ,−v2 ) f (−v1 , v2 ); and

(iii ) cov{I
N
(v1 , v2 ), IN (v∞1 , v∞2 )}, for v1Nv∞1 and v2Nv∞2 is asymptotically equal to

f (v
1
,−v∞

1
) f (−v

2
, v∞
2
)+ f (v

1
, v∞
2
) f (v∞
1
, v
2
).

By part (i) the nonparametric periodogram is asymptotically an unbiased estimator of
the spectral density f.

In the stationary case when v∞Nv we have that I
N
(v∞) and I

N
(v) are asymptotically

uncorrelated; see Theorem 1(iii). However, in the nonstationary case, Theorem 2(iii) shows
that I

N
(v1 , v2 ) and I

N
(v∞
1
, v∞
2
) are not asymptotically uncorrelated. We propose in § 4·2

another nonstationary periodogram, IB
N
, with better asymptotic properties. In particular,

the values of IB
N

at different frequencies are asymptotically uncorrelated.

4. A     

4·1. Nonstationary spatial model

In this section, we propose a new class of nonstationary processes, based on a convol-
ution of local stationary processes. This new model has the advantage that the model is
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simultaneously defined everywhere, unlike moving window approaches (Haas, 1995), but
it retains the attractive property that, locally in small regions, it behaves like a stationary
spatial process.

We model a nonstationary process Z observed on a region D as a convolution of weakly
stationary processes:

Z(x)= P
D

K(x−s)Z
h(s)

(x) ds, (10)

where K is a kernel function and Z
h(s)

(x), for xµD, is a family of independent stationary
Gaussian processes indexed by h(s).

The covariance function C(x1 , x2 ; h ) of Z is a convolution of the covariance functions
C
h(s)

(x1−x2 ) of the stationary processes Z
h(s)

:

C(x
1
, x
2
; h )= P

D
K(x
1
−s)K(x

2
−s)C

h(s)
(x
1
−x
2
) ds. (11)

The covariance function of Z
h(s)

is stationary with parameter h(s), and we assume that h(s)
is a continuous function on s. The process Z

h(s)
could have a Matérn stationary covariance

function of the form

C
h(s)

(x)=
pd/2w

s
2n
s
−1C(n

s
+d/2)a2n

ss
(a
s
|x | )n
s
K
n
s

(a
s
|x | ), (12)

where K
n
s

is a modified Bessel function, d is the dimension of s, and h(s)= (n
s
, a
s
, w
s
). The

parameter a−1
s

can be interpreted as the autocorrelation range, w
s
is a scale parameter,

and the parameter n
s
measures the degree of smoothness of the process Z

h(s)
: the higher

the value of n
s

the smoother Z
h(s)

would be. For example, when n
s
=D , we obtain the

exponential covariance function, C
h(s)

(x)=pw
s
a−1
s

exp (−a
s
|x | ).

In (11) every entry requires an integration. Since each such integration is actually an
expectation with respect to a uniform distribution, we propose Monte Carlo integration
to approximate the integral (11). We propose to draw an independent set of locations s

i
(i=1, 2, . . . , k) on D. Hence, we replace C(x1 , x2 ; h ) with

CC (x
1
, x
2
; h )=k−1 ∑

k

i=1
K(x
1
−s
i
)K(x

2
−s
i
)C
h(s
i
)
(x
1
−x
2
). (13)

In this notation, the ‘hat’ denotes a Monte Carlo integration that can be made arbitrarily
accurate and has nothing to do with the data Z. The kernel function K(x−s

i
) centred at

s
i

could be positive for all xµD, or could have compact support. In the latter case,
K(x−s

i
) would be positive only when x is in a subregion S

i
centred at s

i
, and this would

simplify the calculations.
It is useful to note that, if we define a process ZC for any sµD by

ZC (s)=k−1 ∑
k

i=1
K(s−s

i
)Z
h(s
i
)
(s), (14)

then ZC (s) is a Monte Carlo integration for Z(s) as given in (10). Assume that C(x1 , x2 , h )
is a continuous function of x1 and x2 . As we increase k and the number of observations
s1 , . . . , sk becomes more dense on the domain D, the covariance function (13) of the
process ZC converges to the covariance function (11) of the process Z. Thus, ZC (s) as defined
in (14) converges in distribution to Z(s). Therefore, we still obtain asymptotically optimal
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predictors for Z(x0 ) by using CC as in (13) and the model (14) to represent the process,
instead of the integral representation in (10).

The size of the sample, k, is selected using the following iterative algorithm. We first
start with a systematic sample of size k, where k is small, and we increase k by adding a
new sample point at a time. At each step of the iterative approach we draw a new sample
point in between two neighbouring points in the current sample sequence. Thus, in each
iteration we decrease by half the distance between two neighbouring draws. We iterate
this process until an Akaike information criterion (Akaike, 1974) suggests no significant
improvement in the estimation of the nonstationary covariance of Z by increasing k,
equivalent to decreasing the distance between draws in the sample sequence.

Throughout the rest of this paper we simplify the notation by writing Z
i
to denote

Z
h(s
i
)
and w

i
(x) to represent K(x−s

i
), the kernel or weight function centred at s

i
.

4·2. Spectrum for a new class of nonstationary processes

The nonstationary process Z is modelled here as in (14), as a mixture of weakly
stationary processes Z

i
(i=1, . . . , k), with cov{Z

i
(x), Z

j
(y)}=0 for iN j:

Z(x)= ∑
k

i=1
Z
i
(x)w
i
(x), (15)

and we choose k using the  approach discussed in § 4·1; see Fuentes (2001) for further
discussion about how to model a nonstationary process as a mixture of stationary
random fields.

Each stationary process Z
i
has the representation

Z
i
(x)= P

R2

exp (ixTv) dY
i
(v), (16)

where the Y
i
are random functions with uncorrelated increments.

Thus, the spectral representation of Z is Z(x)=∆
R2

exp(ixTv) dY (v), where

Y (v)= ∑
k

i=1
w: i 1 Y

i
(v), (17)

w: i is the Fourier transform of w
i
and 1 denotes the following convolution function:

w: i 1 Y
i
(v)= P

R2

w: i (h)Y
i
(v−h) dh.

The covariance function of Z can be defined in terms of the covariance function of the
orthogonal stationary processes Z

i
:

cov{Z(x
1
), Z(x

2
)}= ∑

k

i=1
w
i
(x
1
)w
i
(x
2
) cov{Z

i
(x
1
), Z
i
(x
2
)}. (18)

This is a valid nonstationary covariance function. Then the corresponding spectral density
is

f (v
1
, v
2
)= ∑
k

i=1
f
i
1{w: i (v1 )w: i (v2 )}, (19)
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where w: is the fast Fourier transform of w, and 1 denotes again a convolution function:

f
i
1{w: i (v1 )w: i (v2 )}= P

R2

f
i
(v)w: i (v1−v)w: i (v2−v) dv.

4·3. Nonparametric spectral estimation

We present here an asymptotically unbiased nonparametric estimator, IB
N
, of the spectral

density f of a nonstationary process Z. We model Z as in (15). Thus, a natural way of
defining IB

N
is as a convolution of the periodograms I

i,N
of the stationary processes Z

i
with

domain D:

IB
N
(v
1
, v
2
)= ∑
k

i=1
I
i,N

1{w: i (v1 )w: i (v2 )}, (20)

where 1 denotes the convolution

I
i,N

1{w: i (v1 )w: i (v2 )}= ∑
vµJ
N

I
i,N

(v)w: i (v1−v)w: i (v2−v),

with J
N

the set of the Fourier frequencies (7). The weights w
i
have compact support and

they help to identify the processes Z
i
that are being used. By the definition of f in (19) as

a function of the spectral densities f
i
(i=1, . . . , k) and the fact that the periodograms I

i,N
are asymptotically unbiased estimators of f

i
, we obtain that IB is asymptotically unbiased.

The asymptotic variance of IB
N
(v1 , v2 ) can be easily obtained because the processes Z

i
are

orthogonal. Thus, when n
i
�2, for i=1, 2, D�0 and Dn1�2, Dn2�2, the variance of

IB
N
(v1 , v2 ) becomes

∑
k

i=1
f 2
i
1{w: 2i (v1 )w: 2i (v2 )}.

Furthermore, since IB
N

is a convolution of independent stationary periodograms, we
obtain cov{IB

N
(v1 , v2 ), IBN (v∞1 , v∞2 )}=0 asymptotically.

4·4. Parametric spectral estimation

Suppose again that Z takes the form (15), so that we use the expression in (19) for f.
The spectral density f is modelled then as a function of the spectral densities f

i
(i=1, . . . , k).

A parametric estimator f@ of the spectral density is easily obtained from parametric
estimators of the spectral densities f

i
(i=1, . . . , k):

f@ (v
1
, v
2
)= ∑
k

i=1
f@
i
1 {w: i (v1 )w: i (v2 )}. (21)

We now study parametric models for the f
i
. A class of practical variograms and auto-

covariance functions for the stationary processes Z
i
can be obtained from the Matérn

class of spectral densities

f
i
(v)=w

i
(a2
i
+dvd2 )(−n

i
−Dd), (22)

with parameters n
i
>0, a

i
>0 and w

i
>0, where d is the dimensionality of Z

i
. Here, the

vector of covariance parameters is h
i
= (w
i
, n
i
, a
i
) The parameter a−1

i
can be interpreted

as the autocorrelation range. The parameter n
i
measures the degree of smoothness of the
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process Z
i
, in that the higher the value of n

i
the smoother Z

i
would be, and w

i
is the

variance s2
i
times a2n

i
. The corresponding covariance function for the Matérn class is given

in (12). For further discussion about the Matérn class see Stein (1999, pp. 48–51).
If we assume that we are sampling from a Gaussian process, then it is straightforward

in principle to write down the exact likelihood function and hence to maximise it numeri-
cally with respect to the unknown parameters (Kitanidis, 1983; Mardia & Marshall, 1984).
The evaluation of the likelihood function requires the computation of the inverse and
determinant of the model covariance matrix. In general, environmental datasets are very
large and calculation of such determinants is often infeasible, though, if we use the non-
stationary model (15), the covariance matrix is a block matrix and calculations are simpler;
see for instance, Mardia et al. (1979, formula A.2.3j, p. 457).

5. A:   

The goal is to understand and quantify the weekly spatial structure of air pollutants
using the output of the regional scale air quality models, Models-3. Models-3 estimate
hourly concentrations and fluxes of different pollutants. The primary objective of Models-3
is to improve the environmental management community’s ability to evaluate the impact
of air quality management practices for multiple pollutants at multiple scales, as part of
the regulation process of the air pollutants standards. As an example we examine nitric
acid. The spatial domain D is a regular 81×87 grid, where the dimensions of each cell
on the grid are 36 km×36 km. The 81×87 lattice for Models-3 is a two-dimensional grid
that takes account of the earth’s curvature. Models-3 provide the estimated concentration
for the middle point of each cell. In this example we analyse the spatial structure of the
hourly averaged nitric acid concentrations for the week starting 11 July 1995. We fit model
(10), taking K to be the Epanechnikov kernel K(u)=2p−1 (1−dud2/h2 ), for 0<dud<h,
with h an arbitrary bandwidth, and replacing the integral over D by a sum over a grid of
cells covering the observation region.

In practice, the choice of h is crucial. The bandwidth should be small to preserve the
general ‘shape’ of the data (Clark, 1977). In a regression setting, reducing the size of the
bandwidth reduces the bias but increases the variance. In our spatial setting, since the
variance might change with location we do not gain much by increasing h. The shape of
the process is represented by the parameter h, which accounts for the lack of stationarity
of Z. Thus, we need to choose h as small as possible to preserve this general shape.
However, we also need to ensure that for all xµD there is at least one s

i
, with K(x−s

i
)>0,

where the {s
i
} are the k draws on D to calculate the covariance (13). In this application

we choose the smallest value of h that satisfies this condition. When the distance between
neighbouring points of the sample sequence s1 , . . . , sk varies, we could also allow the
bandwidth to change with location. If we have k draws from a systematic sample with a
distance l between sampling points, then the recommended value for h is l/√2. Note that
the value of h depends on k.

In this example k=9, which is the optimal value for k based on the  criterion. The
sample points s1 , . . . , sk are a systematic sample and they are plotted in Fig. 1. The distance
l between the sampling points is 972 km. The value of h in this application is h= l/√2=
687 km. We used a likelihood approach to estimate the parameters of the nonstationary
covariance matrix, which is a mixture of 9 stationary Matérn models of the form (22).
Since the kernel function K has compact support, the covariance matrix of Z is approxi-
mately a block matrix, which simplifies the calculations; otherwise the evaluation of the
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likelihood function requires us to compute the inverse and determinant of a
7209×7209 matrix.
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Fig. 1. Air pollution data. Output of Models-3, showing the hourly
average concentration of nitric acid in parts per billion for the week
starting 11 July 1995. The resolution is 36 km×36 km. This graph

also shows the locations of the sampling points s1 , . . . , s9 .

Figure 2 shows the fitted models for the spectral densities, f
i
, of the stationary processes

Z
i
, for i=1, . . . , 9. The nonstationary spectral density f (v1 , v2 ), defined in (19), is

obtained as a convolution of the densities f
i
(i=1, . . . , 9). Table 1 shows the estimated

parameters for the spectral densities f
i
and the corresponding standard errors.

The smoothing parameter represents the rate of decay of the spectral density at high
frequencies; this is an indication of how smooth the corresponding process is. The
smoothing parameter is approximately 0·5, corresponding to the exponential model for
the processes Z1 , Z4 , Z7 and Z8 . These processes explain the spatial structure of the nitric
acid concentrations on the eastern part of our domain; see the location of the sampling
points in Fig. 1. We observe a relatively faster rate of decay at high frequencies for the
processes Z5 , Z6 , Z9 , Z2 and Z3 , with a smoothing parameter of approximately 1, corre-
sponding to the Whittle model. These processes explain the spatial structure of the nitric
acid concentrations on the western part of our domain mainly over water; the nitric acid
seems to be a smoother process over water than over the land surface. The nitric acid is
a secondary pollutant, in being the result of photochemical reactions in the atmosphere
rather than being emitted directly from sources on the surface. It therefore usually remains
in the atmosphere for long periods of time and travels long distances across water.

When the range parameter is large, for example for process Z8 , there is a faster decay
of the spectral density at short frequencies. We can appreciate this phenomenon by compar-
ing the spectral density of Z6 , large range, to the spectral density of Z5 , small range. In
general we observe larger ranges of autocorrelation on the western part of the grid.
Furthermore, on the eastern part we should not expect large ranges because of the disconti-
nuity of the nitric acid concentration that results from transition from land to ocean.

The variance of the process, also called the sill parameter, is the integral of the spectral
density function, ∆

R2
f (v) dv. In this example, the sill is relatively large for Z8 . There is

higher spatial variability, large sill, mainly on the Great Lakes area, process Z8 , since the
area is downwind from sources of pollution, primarily Chicago.
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Fig. 2. Air pollution data. Fitted models for the spectral densities, f
i
, of the stationary processes Z

i
, for

i=1, . . . , 9. Table 1 shows the estimated parameters with the corresponding standard errors for the Matérn
spectral densities of Z

i
for i=1, . . . , 9. The estimates and standard errors are obtained using a likelihood

approach.

Table 1. Estimated parameters, and standard
errors in parentheses, for the spectral densities
of the processes Z

i
. T he parameters have been

estimated using a likelihood approach

Process Sill Range Smoothness

Z1 2·9 (1·1) 566 (282) 0·74 (0·03)
Z2 2·1 (0·5) 315 (131) 0·98 (0·10)
Z3 1·8 (0·1) 231 (18) 1·01 (0·05)
Z4 1·10 (0·3) 480 (193) 0·63 (0·03)
Z5 1·22 (0·07) 150 (20) 1·19 (0·22)
Z6 1·17 (0·01) 476 (17) 0·91 (0·01)
Z7 1·4 (0·3) 500 (139) 0·46 (0·03)
Z8 15 (3) 975 (292) 0·67 (0·01)
Z9 3 (0·2) 252 (45) 0·84 (0·08)
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A

Proofs of T heorems

Proof of T heorem 1. (i) We define

J(v)=D(2p)−1(n
1
n
2
)−1/2 ∑

n
1

x
1
=1
∑
n
2

x
2
=1

Z(Dx) exp (−iDxTv), (A1)

for vµ[−p/D, p/D]2. Then I
N
(v)=J(v)Jc(v). We obtain the following expression for the expected

value of I
N

in terms of C
D

(Brillinger, 1970):

E{J(v)Jc(v)}=AD2pB2 ∑
n
1
−1

t
1
=−(n
1
−1)

∑
n
2
−1

t
2
=−(n
2
−1)

(1−t
1
/n
1
) (1−t

2
/n
2
)C
D
(t) exp (−iDtTv)

= f
D
(v)+e

N,D
, (A2)

where

C
D
(t)=cov[Z{D(s+t)}, Z(Ds)].

We prove that, as n
i
�2 and Dn

i
�2 for i=1, 2, the term e

N,D
goes uniformly to zero. First, by

Lemma P4.3 in Brillinger (1975, p. 403) and under condition (1b), the residual term in (A2) can
be bounded as follows:

|e
N,D
|∏

1

n
1
n
2

∑
2(n
1
−1)

t
1
=−2(n

1
−1)

∑
2(n
2
−1)

t
2
=2(n
2
−1)
dDtd |C

D
(t) |∏

1

ND2 P
R2

dud |C(u) | du=0(D−2N−1 ). (A3)

Thus, by combining results (A2) and (A3), we obtain that, for vµ[−p/D, p/D]2, E{J(v)Jc(v)}
converges uniformly to f

D
(v), so that

E{I
N
(v)}= f

D
(v)+0(D−2N−1 ).

We now obtain that, as D�0 and n
i
�2 for i=1, 2, the spectral density of the sampled data

Z(Dx), for xµZ2, becomes the spectral density of Z(s) for sµR2; this means that f
D
(v) converges

to f (v). We also address the question of how fast f
D
(v) converges to f (v). Define Z

−0=Z−{0}
and Z2

−0
=Z2−{(0, 0)}. Then

f
D
(v)− f (v)= ∑

QµZ2
f Av+ 2pQ

D B− f (v)= ∑
QµZ2
−0

f Av+ 2pQ

D B .
Under condition (1a), for small enough D, the previous expression is proportional to

∑
QµZ2
−0

Lv+ 2pQ

D L−t. (A4)

Under condition (1a) for t>2, by the integral test (Stein, 1967, p. 319) the series (A4) converges
to zero uniformly in v at a rate of O(Dt ). Therefore,

E{J(v)Jc(v)}= f (v)+0(D−2N−1 )+O(Dt ). (A5)
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(ii) By combining (A2) and (A3), as a generalisation of Theorem 5.2.4 in Brillinger (1975, p. 125),
we obtain

var{I
N
(v)}=E{J(v)J(v)}E{Jc(v)Jc(v)}+|E{J(v)Jc(v)}|2= f 2

D
(v)+0(D−2N−1 ); (A6)

the residual term is uniform in v. Using the same argument as in part (i), we obtain that, as D�0,
Dn
i
�2 and n

i
�2 for i=1, 2, the rate of convergence of the function f 2

D
(v) to f 2(v) is of order

O(D2t ). Thus,

var{I
N
(v)}= f 2(v)+0(D−2N−1 )+0(D2t ). (A7)

(iii) By (A3) and Theorem 5.2.4 in Brillinger (1975, p. 125), we obtain

cov{I
N
(v), I

N
(v∞)}=E{J(v)J(v∞)}E{Jc(v)Jc(v∞)}+|E{J(v)Jc(v∞)}|2=0(D−2N−1 ),

the residual term being uniform in v. %

Proof of T heorem 2. (i) By a similar argument to that in the proof of Theorem 1(i), we obtain

E{I
N
(v
1
, v
2
)}=E{J(v

1
)Jc (v

2
)}= f

D
(v
1
, v
2
)+e
N,D

.

Under condition (2b), the residual term e
N,D

can be uniformly bounded:

|e
N,D
|∏

1

ND4(2p)4 P
R2
P
R2

d(u
1
, u
2
)d |C(u

1
, u
2
) | du
1
du
2
=0(D−4N−1 ).

Thus,

E{I
N
(v
1
, v
2
)}= f

D
(v
1
, v
2
)+0(D−4N−1 ). (A8)

By using the same argument as in Theorem 1(i) the rate of convergence of f
D
(v1 , v2 ) to f (v1 , v2 )

is 0(Dt ). Therefore,

f
D
(v
1
, v
2
)− f (v

1
, v
2
)=0(Dt ). (A9)

Combination of (A8) and (A9) establishes Theorem 2(i).
(ii) We have that

var{I
N
(v
1
, v
2
)}=E{J(v

1
)J(v
1
)}E{Jc(v

2
)Jc(v

2
)}+|E{J(v

1
)Jc(v

2
)}|2.

As in the proof of Theorem 2(i), we obtain that E{J(v
1
)J(v1 )} is asymptotically f (v1 ,−v1 ),

E{J c (v2 )J c (v2 )} is f (−v1 , v2 ), and

E{J(v1 )J c (v2 )}= f 2
D
(v1 , v2 )+eN,D , (A10)

which by (A9) is asymptotically f 2 (v1 , v2 ).
(iii) That the covariance cov{I

N
(v1 , v2 ), IN (v∞1 , v∞2 )} is asymptotically

f (v
1
,−v∞

1
) f (−v

2
, v∞
2
)+ f (v

1
, v∞
2
) f (v∞
1
, v
2
)

can be easily proven using the same argument as in (A6). %
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